请在 下方输入 要搜索的题目:

如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.https://bgk-photo.cdn.bcebos.com/0b46f21fbe096b6335ab18301c338744ebf8ac24.jpg

如图,在矩形ABCD中,AB=8,BC=6,对角线A
C、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段C
E、边B
C、对角线BD于点
F、G、H(点F不与点
C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.https://bgk-photo.cdn.bcebos.com/0b46f21fbe096b6335ab18301c338744ebf8ac24.jpg

发布时间:2025-07-03 14:58:50
推荐参考答案 ( 由 题搜搜 官方老师解答 )
答案:解:(1)∵AB=8,BC=6,∴AC=10,∵AF⊥CE,∴∠AFC=∠AFE=90°,∵点F是线段CE的中点,∴CF=EF,在△ACF和△AEF中,∴△ACF≌△AEF,∴AE=AC=10,∴BE=2,∵∠CGF=∠AGB,∠GFC=∠ABG,∴∠FCG=∠GAB,∠CBE=∠ABG,∴△CBE∽△ABG,∴=,即=,BG=,∴CG=,∵∠GCF=∠BCE,∠CFG=∠CBE,∴△CGF∽△CBE,∴=,又CE=2CF,∴2CF2=BC•CG,∴CF=,∴GF==;(2)如图,作BM⊥AF,ON⊥AF,垂足分别为M、N,∵AF⊥CE,∴ON∥BM∥CE,∴△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,∴=====,∴=,又∵△CBE∽△ABG,∴=,BE=x,∴BG=x,∴=,则y=(0<x<).(3)当△BHG是等腰三角形,①当BH=BG时,△AHD∽△BHG,=,则5 y=6,y=1,由y=,解得x=3;②当GH=GB,得出∠AHD=ABH,不存在;③当HG=HB,得出∠HGB=∠HBG=∠OCB不存在.所以BE=3.
相关试题
登录 - 搜搜题库网
立即注册
注册 - 搜搜题库网
立即登录